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INTRODUCTION

Solution to Fick 1s diffusion equation using expansions whicF. faver
the evaluation of data with large values of time have been used here for
several years to analyze permeation measurements. This type of expansion
converges fast in the larger the range. The first term is good enough
for diffusivity calculations in the range of large values of time. B“t
many terms must be included for evaluations in the short initial the
interval.

Another solution by Laplace transformation of the diffusion equation
is studied here. This solution gives an expansion in the short interval

which converges fast. This new expansion is complementary to the “large-t’!
expansion and is discussed in this report. The advantage is that more
data from pumpout and breakthrough perm~tion experiments can now be used
in the statistical evaluation of diffusivity.
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S-Y AND CONCLUS TON

1.

2.

3.

me “Large-t” expansion is a solution of the diffusion equation solved
by an assumption of time-apace variable separation. The “Small-t
expansion is another solution of the diffusion equation solved hy Laplace
transformation.

The “Large-t” expansion converges fast in the large time range and a
new “Small-t” expansion converges fast in the small time range. These
two expansions are complementary to each other.

Pe?meation measurements can be treated by either expansion by including
many terms and by a non-linear least square program. But the first
term with stiple linear regression givea accurate results by using
one or the other expansion depending upon the time range of the data
being treated.
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DIsCUSSION

1. Permeation Measurement Methods

Mnst permeatio~ measurements are made by either “Breakthr~ugh” or
“Pump-Out” methods.

(a) Brief “Breakthrough” method description

Both sides of a sample are under vacuum initially. Applying
a fixed pressure of a gas on one side, the flow rate is
measured on the other side of the sample until steady state
is obtained. The relative flow rate ia defined by

J~-J(t)
y=

J~
1

where J(t) and J~ are the flow rates at time t and fi~l
steady state, respectively.

(b) Brief “Pump-Out” method description

One side of a sample is under a fixed pressure of gas and
the other side is under vacuum. The flow of the gas through
the sample is under steady state initially. Pmping out

quickly on the high pressure side, the flow rate is then
m-sured on the initially evacuated side until the flow
reaches a minimum signal limit. The relative flow rate is
defined by

2

where J(t) and J~ are the flow rates at time t and the
initial steady state, respectively.

2. “Small-t” and “Large-t” Expansion

The diffusion equation has been solved in two different approaches 2-4;
(1) by an assumption of space-time variable separation, and (2) by
hplace transformation. The convergency of the infinite series expansion
depends on the range of time. The “Large-t” expansion, a solution by
apace-ttie variable separation, converges fast in the large time range.
The “Small-t” expanaion, a solution by Laplace transformation, converges
fast in the range of small time.
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The relative flow rate by

y = -2 ~ (-1)* exp
~=1

“Large-t” expansiOnl *5 is

[1n2112Dt-—
ky

3

where D is the diffusivicy of
the thickness of the sample.
s-ation contribute little.

y = 2 exp [-112Dt/12]

The slope cn the semilog plot

the gas through the sample and !?.is
Aa t increases the higher terms in the
Approximately then

4

gives diffusivity by the relation:

5

The relative flow rate by “Small-t” expansion is

m

y=l-

[
&Eexp -

(2n+l)2,Q2
4Dt~=~ 1 6

The details of the derivation are in the Appendix. As t decreases
the higher tenns in the s~ation contribute little. By
rearrangement

[1In [(l-y) A] = In #D
~2

-~+ln

{

m

1+ z

[

exp -
(2n+l)2.F,2-L2

n=l 4Dt 1}
7

In the small time range the last term on the right hand side is
negligible. From the slope

d in [(1-y)~] _ 9,2
d(l/t) - ‘~

8

diffusivity can be calculated.

The swnnations up to the third term of the “Smll-t” and “Large-t”
expansion approx~tions are compared with the exact value of the relative
flow rates in Table 1. In the range where y is larger than O.1 only one
term of the “Small-t” expansion is required. One term of the “Large-t”
expansion is sufficient in the range where y is smaller than 0.4. These
two expansions are complementary to each other in the evaluation of actual
test data. The comparisons are shown in Figure 1.



APPENDIX

Derivation

The diffusion equation for

If D is constant, we have

ac azc—.DW
at

By Laplace transformation

of “Srndll-t”Expansion

one dimensional flow is

A-1

A-2

where

F= ! e-pt, dt
0

We also have

= -C(t=o) + PE

The diffusion equation, A-2, is

I

A-3

A-4

A-5

A-6

(i) For the “Breakthrough” process we have C(t=O)=O and

azc

w-q2F=0 A-7

where

qz=p
D A-8



The solution of the equation A-7 is

E = CAe-qx + CBeqx A-9

By boundary conditions for t>o

Atx=O, C= Co, F= Co/p
A-10

Atx=L, C= O,~=O

the constants in equation A-9, CA and CB are solved by A-9, and A-10.

CA+C
.B

= Colp

CAe-qL + CBeql = O A-n

which give

1C=co

A P l-~ -Zql

A-12

The solution A-9 is

By expansion

We have

.

Z=c z

[

~-q(2n!?+x) ~-q{2(n+l)i-x}

0 ~=~ P- P 1
The inverse Laplace transformation on A-15 gives

.

C=co
[

I erfc -- — 1~rfc2(n+l)L-x

2bt
*=O

A-13

A-14

A-15

A-16

.,
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where

.

erfe(Z) = ~ J ~-z,2Az dZ ‘

z

=1-A
J

~_z ,2

&o
dZ’

= 1 - erf(Z)

and

& (erf Z) =* e-zz

The flow rate J(t) is defined by

By equations A-16, A-17, A-18 and A-19, J(t) is

f

m

J(t) = 2C
[

~~~exp-
(2n+l)2$2

n-0 4Dt 1
At the steady state

and the boundary conditions we have

c = Co(l - ~)

and

J .=
s k

The equations A-20 and A-23 give the relative flow rate

This is the final form of the “Breakthrough” case.

A-17

A-18

A-1.9

A-20

A-21

A-22

A-23

A-24

...
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(ii) For

and

the ‘tpump-out” case at t = O (steady state)

acs

()

azcs

Z“o=D ‘a= t=o

c~ = co (1 - .;)

A-25

(A-22)

where C~ = C(t=o)

The equations, A-6 and A-22, lead to

With

az~ * +Q .=O
~-~ ~

definition of a new variable ~“

~.=s-~
P

the equation A-26 is given by

But by A-25

A-26

A-27

A-28

A-29

A-28 is now

-&Et+;y=o A-30

or

a2Z>—_
axz q2E> = 0 A-31

where qz = ~. This has s~e form as the equation A-7.

The boundary conditions for t > 0

At X=O, C=o, C=o, ~- = ~

At X=l, C=o , ~=o, ~=o

A-32
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These are the same as conditions in A-10 except ~>
c.

instaad of
By A-15 the solution of A-31 is

m

7“=C0 z

[

~rfc * 1-~rfc2(n+l)i-x

~=~ 2v’Dt 2ht
A-33

The inverse Laplace transformation of ~ = (C~/p) - ~ gives

.
c=c~-coz

[

~rfc 2ni+x _ ~rfc 2(n+l)L-x—. . 1 A-34
~.~ Zht 2ht

The flow rate is then

J(t) = J~ - 2 Co /1+

; ‘Xp [- ‘2n:::2L21‘-35~.~
or the relative flow rate

A-36

This is the final form of the “pump-out” case and has exactly
the same as equation A-24 for the “Breakthrough” case.

In both cases the relative flow rate is given by

For the “Pump-Out’t case Y

for the “Breakthrough’~ Case Y

(2n+l)212
4Dt 1

= J(t)/Js and

= J - J(t) /Js.
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TA8LE 1

Comparison of “Small-t!’and “Large-t” Expansion with

the Exact Values

l!Sma11 Tti# ‘f
1 2 3

0.99997
0.98911
0.92858
0.82472
0.70710
0.s9441
0.49433
0.40870
0.33682
0.27711
0.22780
0.18725
0.15399
0.12680
0.10467
0.08677
0.07236
0.06090
0.05192
0.04503
0.03989
0.03624
0.03385
0.03253
0.03212
0.03966
0.05637
0.07702
0.09906
0.12122

0.33681
0.27708
0.22772
0.18705
0.15360
0.12611
0.10353
0.08499
0.06977
0.05727
0.04701
0.03859
0.03168
0.02601
0.02135
0.01753 0.01752
0.01439 0.01438
0.00540 0.00536
0.00218 0.00200
0.00126 0.00074
0.00143 0.00028
0.00229 0.00011

‘ttirqe The ‘f
1 2 3 Exact

1.64174
1.34765
1.10624
0.90808
0.74542
0.61189

0.50228
0.41231
0.33845
0.27782
0.22806
0.18720
0.15367
0.12614
0.10355
0.08500
0.06977
0.05727
0.04701
0.03859
0.03168
0.02601
0.02135
0.01752
0.01438
0.00536
0.00200
0.00074
0.00028
0.00010

0.73366 1.07211 .99997
0.93534 0.99262 .98911
0.91904 0.92873 .92858
0.82308 0.82472 .82472
0.70682 0.70710 .70710
0.59437 0.59441 .59441
0.49432 0.49433 .49433
().40869 0.40870 .40870
0.33681 .33681
0.27708 .27708
0.22772 .22772
0.18705 .18705
0.15360 .15360
0.12611 .12611

.10355

.08500

.06977

.05727

.04701

.03859

.03168

.03601

.02135

.01752

.01438

.00536

.00200

.00074

.00028

.00010


